Search results for "MODULATION INSTABILITY"
showing 10 items of 13 documents
Polarisation attraction and incoherent modulation instability in optical fibers
2006
This thesis, entitled « Polarisation attraction and incoherent modulation instability in optical fibers », presents a theoretical and experimental study of two new processes from the nonlinear optic in optical fibers domain. We introduce in the first chapter some theoretical notions useful for the comprehension of this work. Then, we demonstrate in the second chapter that it is possible to generate some modulation instability in optical fibers using a partially coherent optical beam. We highlight and observe the main properties of the phenomenon. We study the polarisation attraction in isotropic fibers process in the third chapter. Our work proves the existence of the phenomenon, and permit…
Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response
2006
International audience; We analyse modulational instability (MI) of electromagnetic waves in a large variety of optical fibers having different refractive-index profiles. For the normal-, anomalous-, and zero-dispersion regimes of the wave propagation, we show that whenever the second-order dispersion competes with higher-order dispersion (HOD), propagation of plane waves leads to a rich variety of dynamical behaviors. Most of the richness comes from the existence of critical behaviors, which include situations in which the HOD suppresses MI in the anomalous dispersion regime, and other situations in which the HOD acts in the opposite way by inducing non-conventional MI processes in the nor…
Roadmap on optical rogue waves and extreme events
2016
Nail Akhmediev et al. ; 38 págs.; 28 figs.
Gap solitons and modulation instability in a dynamic Bragg grating with nonlinearity management
2008
International audience; We investigate the occurrence of modulation instability in systems in which a dynamic Bragg grating consists of alternating positive and negative Kerr coefficients. The dependence of modulation instability gain spectra over the perturbation wavenumber and system parameters is portrayed near and at the edges of the photonic band gap structure. Further, we demonstrate the generation of traveling gap solitons near the photonic band gap structure through the modulation instability
Modulational instability and generation of self-induced transparency solitons in resonant optical fibers
2009
International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.
Polarization Modulation Instability in Dispersion-Engineered Photonic Crystal Fibers
2021
Generation of widely spaced polarization modulation instability (PMI) sidebands in a wide collection of photonic crystal fibers (PCF), including liquid-filled PCFs, is reported. The contribution of chromatic dispersion and birefringence to the net linear phase mismatch of PMI is investigated in all-normal dispersion PCFs and in PCFs with one (or two) zero dispersion wavelengths. Large frequency shift sidebands are demonstrated experimentally. Suitable fabrication parameters for air-filled and liquid-filled PCFs are proposed as guidelines for the development of dual-wavelength light sources based on PMI.
Complex rogue wave in the fiber optics
2016
This manuscript presents the generation of complex rogue waves related to nonlinear instabilities occurring through the propagation of light in standard optical fibers. Linear and nonlinear physical phenomena involved are first listed, in particular some of them by analogy with the field of hydrodynamics. The different forms of rogue waves induced by the modulation instability process are then presented. They are also known as "breathers", and they are obtained by solving the nonlinear Schrödinger equation. From these exact solutions, various experimental systems were designed by means of numerical simulations based on two rogue-wave excitation methods. The first one is an exact generation …
Nonlinear parametric resonances in quasiperiodic dispersion oscillating fibers
2015
We numerically study the evolution of the spectrum of parametric resonance or modulation instability sidebands in quasiperiodic dispersion oscillating fibers. We separately consider a linear variation along the fiber of either the spatial period, the average dispersion, or the amplitude of the dispersion oscillation. We found that this linear variation of the dispersion oscillating fiber parameters may provide different novel mechanisms for the splitting of the resonance sideband spectrum, owing to coherent interference between quasi-resonant waves that are generated at different points along the fiber. (C) 2015 Elsevier B.V. All rights reserved.
Toward a wave turbulence formulation of statistical nonlinear optics
2012
International audience; During this last decade, several remarkable phenomena inherent to the nonlinear propagation of incoherent optical waves have been reported in the literature. This article is aimed at providing a generalized wave turbulence kinetic formulation of random nonlinear waves governed by the nonlinear Schrodinger equation in the presence of a nonlocal or a noninstantaneous nonlinear response function. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are obtained. In the spatial domain, when the incoherent wave exhibits fluctuatio…
Vector FWM in optical fibers: tuning techniques and applications
2022
Recientemente, el efecto no lineal de mezcla de cuatro ondas (FWM) en fibras ópticas ha atraído un gran interés para el desarrollo de nuevas fuentes de luz de fibra óptica debido a la emisión de luz múltiple producida por este efecto no lineal. En los últimos años, estas fuentes de luz basadas en FWM han demostrado una gran utilidad en áreas como la óptica cuántica y la microscopía avanzada basada en efecto Raman. Además, según el estado de polarización de la luz de bombeo responsable del efecto FWM y la birrefringencia de la fibra, la luz producida por FWM puede presentar diferentes propiedades de polarización dada la naturaleza vectorial de FWM. Esto posibilita el diseño y desarrollo de f…